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Abstract. We present a stochastic evolutionary model obtained through a perturbation of
Kauffman’s maximally rugged model, which is recovered as a special case. Our main results are:
(i) existence of a percolation-like phase transition in the finite phase space case; (ii) existence
of non-self-averaging effects in the thermodynamic limit. Lack of self-averaging emerges from
a fragmentation of the space of all possible evolutions, analogous to that of a geometrically
broken object. Thus the model turns out to be exactly solvable in the thermodynamic limit.

1. Introduction

We present here the analytic study of a model of an abstract behaviour with frustrated
rationality. The model, despite or because of its ingenuity, has revealed interesting statistical
properties, such as a percolative phase transition in the finite-dimensional case and non-self-
averaging effects in the thermodynamic limit. Our starting point is Kauffman’s well known
NK model of biological evolution (see [1]) in its maximally rugged version (K = N − 1),
whose properties have been extensively investigated. Yet in this paper it serves as a
metaphoric abstract model for the behaviour of a fully rational adaptive walker who moves
in its phase space in search of an optimal configuration. We decided to perturb its stringent
rationality by introducing in the evolutionary rule a probabilityp, as a measure of a certain
degree of insanity (or frustration or disorder). Forp = 1 we recover the original model,
whereas forp = 0 we have a random walker in configuration space. The introduction of
p is fatal for the adaptive behaviour, but leads to a percolation-like phase transition, that
separates a phase characterized by finite walks to optima from one in which the probability
of an interminable walk is non-zero. We show that in a large configuration space a small
perturbation is sufficient to get the percolation threshold. The thermodynamic limit is
obtained by letting the cardinality of the phase space go to infinity. We argue that this
leads to an infinite number of different possible evolutions. Nevertheless, in this limit we
show that the probabilityY that two walkers undergo ‘similar’ (in a sense that will become
clear later) evolutions has non-zero average value and a finite variance, that is it lacks
self-averaging. This property will result from a fragmentation of the space of all possible
evolutions analogous to that of a geometrically broken object [2].

Evolutionary models have become quite familiar to theoretical physicists, and many of
them have been carefully examined (see [3, 4] for a review). This is for two main reasons.
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(i) Species undergoing biological evolution are dynamical systems, in the sense that their
configuration varies with time according to some modelable dynamical law. The dynamics
draws a trajectory in the system’s phase space, that is the set of all possible configurations.
(ii) Biological evolution is a complex phenomenon, since one must assume that each step
of it derives from and is influenced by the concurrence of different factors, which may
be altogether taken into account as a number of random variables that give the system’s
trajectory unpredictability and stochasticity. Hence, many ideas taken from the theory of
disordered systems, the main of which is that of landscape, may be fruitfully applied for
the construction and the study of these seemingly different types of models (see [5] for a
detailed overview).

One assumes that an evolving species (the system) may be found in any of a number
of configurations, representing its genome. This is taken for simplicity to be a finite set of
spin variablesSi (Si = ±1, 16 i 6 N ). The phase space0 is the set{+1,−1}N of all
genomes. The metric in0 is typically the Hamming distancedH . Feature (i) is recovered
by giving some evolutionary algorithmF such that

Ct+1 = F(Ct ) (1)

whereCt is the system’s configuration at timet and time is a positive integer or zero. Feature
(ii) is introduced through the concept of landscape. For our purposes, a landscape is a pair
(0, φ), where0 is the system’s phase space andφ is a real valued functionφ : 0 → R
called fitness, defined for allC ∈ 0. The idea underlying biological evolutionary models is
that F lets the system evolve through configurations of increasing fitness in search for an
optimal one. This optimization procedure is usually not global, that is the system does not
seek the fittest configuration in0; optimal configurations considered are thosex ∈ 0 such
thatφ(x) > φ(y), for all y ∈ 0 such thatdH (x, y) = 1. These are called ‘local optima’.

Of course, the complexity arises from the difficulty in finding the local optima, or, if
one wants, the specific form ofφ, which may eventually depend ont . The more rugged the
landscape, namely the higher the number of maxima and minima ofφ, the more complex
the dynamics.

In Kauffman’s original idea the fitness of each configuration resulted from epistatic
interactions betweenK of itsN genes. An increase ofK implied an increase of the number
of local fitness optima. This way of tuning the landscape’s complexity is equivalent to the
following, which may sound more familiar to physicists (see [6] for an overview of the
contact points between spin-glass physics and biology). One assumes that the fitness of a
configurationC is given by aK-spin type of Hamiltonian,

φ(C) =
N∑

i1,...,iK=1

Ji1,...,iK Si1 . . . SiK (2)

whereC = {S1, . . . , SN } and Ji1,...,iK are Gaussian random variables, withK 6 N . It is
possible to show (see [7, 8] for details) that as the parameterK varies from 1 toN the
landscape’s ruggedness grows accordingly, since correlations between the fitness values
of neighbouring configurations (configurationsx and y such thatdH (x, y) = 1) decrease.
Therefore for largeK, that implies largeN , one finds that the probabilityP(φ1, φ2) that two
configurationsC1 andC2 have fitnessesφ1 ≡ φ(C1) andφ2 ≡ φ(C2) respectively factorizes:

P(φ1, φ2) ' P(φ1)P (φ2). (3)

For all practical purposesφ thus behaves as a random variable. This is Kauffman’s
maximally rugged landscape, which is equivalent to Derrida’s random energy model (again
see [7, 8]).
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This paper is organized as follows. In section 2 we give an account of Kauffman’s
maximally rugged model, with its main statistical properties. Though much of the material
of section 2 are well-established results, we added them to this paper both to make it self-
consistent and to emphasize how the perturbation acts on the system. Section 3 contains
the definition of the perturbed model and its analytic study in the finite phase space case. In
section 4 we study the thermodynamic limit. In the final section we make some comments
on our results and formulate the conclusions.

2. Kauffman’s maximally rugged model

Kauffman’s maximally rugged model is defined as follows. The system may take on any
of the 2N configurations of the phase space0 = {+1,−1}N , and largeN is assumed.
The fitnessφ is a quenched random variable whose probability density is, say,p(φ). The
dynamicsF is then defined as a zero temperature Monte Carlo algorithm:

(i) at time t > 0 the system is in configurationCt = {S1, . . . , SN } with fitnessφ(Ct );
(ii) a spin Si of Ct is chosen at random and its sign is changed, thus obtaining a

configurationC ′ that differs fromCt by just theith spin (16 i 6 N );
(iii) if φ(C ′) > φ(Ct ) thenCt+1 = C ′; otherwiseCt+1 = Ct and return to (ii).
In a rough biological interpretation, this models a situation in which a species evolves

increasing its fitness by random point mutations. Trajectories come to an end when the
system is in a local fitness maximum, because it cannot find any fitter neighbour.F is a
stochastic dynamics that takes the system to such optima passing through configurations
of increasing fitness that are just one spin different from one another. The trajectories are
usually calledadaptive walks, and their length is strictly related to the local properties of the
fitness landscape. These have been analytically studied (see [1, 9]), revealing a generous
structure of very numerous maxima, as we shall soon recall.

Before coming to that, we would like to stress that in what follows we shall consider
two types of averages. The first one, which we shall call a ‘quenched’ average, will be
denoted by a bar (· · ·) and indicates averages over all possible fitness realizations. Suppose
we are given a certain quantityq (for instance, the number of fitness maxima) that may
take on different values in different realizations ofφ (landscapes). The average ofq over
all possible fitness samplings will be writtenq. This notation is slightly unusual since
generally this type of average is denoted by brackets. Instead, the second one will be
denoted here by brackets (〈. . .〉) and will define averages over many different evolutions.
For instance, we shall deal with the average length〈`〉 of an adaptive walk. This could be
written 〈`〉 = ∫ ` dQ(`), whereQ(`) is the probability that an adaptive walk consists of`

steps. In principle it may be difficult to obtain analytical information about the probabilitites
Q(x) (x = length, duration, . . .). This average may nevertheless be estimated as follows.
One fixes the landscape and averages the lengths of many walks with the same starting
point, which by assumption will be the least fit configuration in0. The ensemble in which
averages are calculated are thus that of all possible landscapes on0 for · · · and that of all
possible evolutions (for example, adaptive walks) for〈. . .〉.

We begin by proving that the average number of local optima increases exponentially
with N .

Result 1.Let f (N) denote the fraction of local fitness optima in0 in a given fitness
realization (landscape). We have

f (N) = 1

N + 1
. (4)
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The proof is straightforward: lety(φ) denote the probability that a given configuration has
a lesser fitness thanφ, namelyy(φ) = ∫ φ−∞ p(φ′) dφ′. Since for a local optimum of fitness

φ the N neighbouring configurations must have lower fitness we have thatf (N) is the
average ofyN over all possible choices ofy. The probability densityq(y) of y is uniform,
hence

f (N) =
∫ 1

0
yN dy = 1

N + 1
. (5)

On average there are thus 2N/(N + 1) local optima, so that their number grows
exponentially withN . Now consider making̀ steps of an adaptive walk starting from
the least fit configuration in0. One finds that on average the probability to take a further
step is halved each time a step is taken.

Result 2.Let F(`) denote the fraction of fitter neighbours after` steps. We have

〈F(`)〉 = 2−`. (6)

Indeed, an adaptive walk can be seen as a sequence of increasing but independent values
of φ. If we considery(φ) instead ofφ, an adaptive walk becomes a sequence of increasing
values ofy, which is, as said above, a random variable with uniform probability density
on the [0, 1] interval. For one walk of̀ steps, namely for one increasing sequence of`

independent valuesy1, . . . , y` of y, we can write the probability to find an(`+ 1)th value
of y greater than all of the previous̀as

F(`) = P(y2 > y1)P (y3 > y2) . . . P (y`+1 > y`) (7)

whereP(yn > ym) denotes the probability of sampling a valueyn of y greater thanym.
〈F(`)〉 may be obtained by averaging over all possible samplings ofy1, . . . , y`:

〈F(`)〉 = 〈P(y2 > y1)P (y3 > y2) . . . P (y`+1 > y`)〉. (8)

Clearly,P(yn+1 > yn) = 1− ∫ yn0 q(y) dy = 1− yn, becauseq(y) is uniform. Hence

〈F(`)〉 = 〈(1− y1) . . . (1− y`)〉. (9)

The statistical independence ofy1, . . . , y` implies that

〈F(`)〉 = 〈(1− y1)〉 . . . 〈(1− y`)〉 = 〈(1− y)〉`. (10)

Now it is simply 〈(1− y)〉 = ∫ 1
0 (1− y) dy = 1

2 hence the result follows. Note that we have
used the fact thaty is uniformly distributed on [0, 1].

Let us now turn to the study of the statistical properties of adaptive walks. The two major
outcomes are concerned with the average length of an adaptive walk, which represents the
average number of configurations the system has assumed from its starting one to a local
fitness maximum, and with the average duration of an adaptive walk, namely the total
number of tried mutations, those accepted and those refused.

Result 3.Let 〈`(N)〉 and 〈t (N)〉 denote, respectively, the average length and the average
duration of an adaptive walk. IfN � 1 we have

(i) 〈`(N)〉 ' log2N ;
(ii) 〈t (N)〉 ' N .

(i) is an estimate for〈`(N)〉. It is obtained through the consideration that an adaptive walk
ends when the fractionF(`) of fitter neighbours falls below 1/N . Hence the average length
is that for which〈F(`)〉 ' 1

N
. From result 2 one soon gets

2−` ' 1

N
(11)
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whence the estimate〈`(N)〉 ' log2N follows. A more rigorous though much more
complicated estimate has been derived in [10], where it is shown that〈`(N)〉 ' logN
with a proportionality constant that is slightly different from(log 2)−1. Therefore it is
reasonable to take (i) as a fairly good estimate.

For what concerns (ii), we consider that since the fraction of fitter neighbours is halved
on average at each step, then the waiting time (if one wants, the number of tried and refused
mutations) doubles on average at each step. So the average number of time units one has
to wait in order to take thèth step is 2`−1 (one has to wait a time 1 to take the first step
because by assumption each walk starts from the least fit configuration in0). We obtain
〈t (N)〉 by summing all waiting times in each configuration passed by in an adaptive walk,
the average number of which is given by (i). Hence

〈t (N)〉 =
log2N∑
`=1

2`−1 = N − 1 (12)

where the sum has been performed as if log2N were an integer. For largeN (ii) is recovered.
Again, in [10] it is shown that a more rigorous derivation of〈t (N)〉 yields the same result
〈t (N)〉 ' N up to a proportionality constant that is just slightly different from 1. Therefore
(ii) may well be considered a good estimate.

3. Perturbing Kauffman’s model

In the previous section we have recalled the statistical properties of Kauffman’s maximally
rugged model. Following its dynamical ruleF the system can evolve only through fitter
configurations. In some sense, looking back at spin glasses, one could say that it lacks
frustration. The system always does the right thing, always finds its way in the rugged
landscape, in a finite number of steps reaches a fitness maximum, and that is it; failures
are ruled out. In our perturbed version of this model we want to frustrate the rationality
of the system with an additive selective pressurep, acting as a constraint on the system’s
optimizing ability.

We thus consider a system whose phase space is0 = {+1,−1}N , evolving in a landscape
where the fitnessφ is a quenched random variable. The law of evolutionFp depends on a
real parameterp ∈ [0, 1] through the following definition.

(i) At time t > 0 the system is in configurationCt = {S1, . . . , SN } with fitnessφ(Ct ).
(ii) A spin Si of Ct is chosen at random and its sign is changed, thus obtaining a

configurationC ′ that differs fromCt by just theith spin (16 i 6 N ).
(iii) If φ(C ′) > φ(Ct ) then, with probabilityp, Ct+1 = C ′ and, with probability 1− p,

Ct+1 is chosen at random among theN neighbouring configurations ofCt .
(iv) If φ(C ′) < φ(Ct ), thenCt+1 = Ct and return to (ii).
The landscape’s statistical properties are the same as those of Kauffman’s model, so

that result 1 still holds. The difference from the original model is that this time the system
accepts a favourable mutation only with a probabilityp. If it cannot, then it is forced to
choose a random spin and change its sign, regardless of the fitness of this newly obtained
configuration. By this we mean to model a system that undergoes an external evolutionary
pressure, whose strength increases withp varying from 1 to 0, as it evolves in a rugged
landscape. The pressure is a perturbation of the dynamics, such that the casep = 1
corresponds to the unperturbed model. We shall see that a small perturbation is sufficient
to drastically change all statistical properties of the model. For example, the average length
of a trajectory, which we shall call ap-walk, diverges.
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Let us consider the case of finiteN . We begin by deriving the analogous for the
perturbed model of result 2 for the unperturbed one.

Result 4.Let Fp(`) denote the fraction of fitter neighbours after` steps of ap-walk and let
〈Fp(`)〉 ≡ 〈F(`)〉p. We have

〈F(`)〉p = 1

2− p
[(p

2

)̀
+ 1− p

]
. (13)

One sees that in thep → 1 limit, result 2 is recovered. The proof is not difficult but
tedious. Observe that at each mutation the system makes a choice between two symbols:p

and 1− p. Let � denote the set of all possible sequences of choices the system can make
in a p-walk of given length̀ , namely� = {p, 1− p}`. One can think of ap-walk ω of `
steps as an element of� of the form

ω = {ω1, . . . , ω`} (14)

whereωj ∈ {p, 1−p} for 16 j 6 `. We shall call� the ‘space ofp-walks’. Considering
that when the system accepts a positive mutation the average fraction of fitter neighbours
is halved, one can construct a partition of� made by subsets of ‘similar’p-walks.

(i) The first subset�1 contains thosep-walks such thatω` = 1− p.
(ii) The second subset�2 contains thosep-walks such thatω`−1 = 1− p andω` = p.
(iii) The kth subset (16 k 6 `−1)�k contains thosep-walks such thatω`−k+1 = 1−p

andω`−k+2, . . . , ω` = p.
(iv) The `th subset�` contains thep-walks {1− p, p, . . . , p} e {p, . . . , p}.
We shall call ‘types’ ofp-walks the subsets�m (m = 1, . . . , `), so that ap-walk

ω ∈ �m is ap-walk of themth type. The similarity consists of the fact that allp-walks of
themth type are such that, on average, after the`th step the fraction of neighbours that are
fitter than the configuration reached by the system is 2−m. This is so because this average
fraction depends on how manyp-steps (steps in which the mutation has been accepted) the
system has made since the last(1− p)-step. In fact, a(1− p)-step brings the system to a
configuration having, on average, a fraction of1

2 fitter neighbours (ifN is sufficiently large)
and eachp-step following halves this fraction. For example, ifn − 1 p-steps are taken
after a(1− p)-step (namely if ap-walk of thenth subset is made), the average fraction of
fitter neighbours will be 2−n. So the average probability to have 2−m · N fitter neighbours
after ` steps equals the probabilityP(�m) to take ap-walk of themth type. This is easily
calculated: the probabilityP(ω) that thep-walk ω = {ω1, . . . , ω`} is made is simply

P(ω) =
∏̀
i=1

ωi (15)

and thus

P(�m) =
∑
ω∈�m

P (ω). (16)

A straightforward calculation shows that

P(�`) = p`−1

P(�k) = (1− p)pk−1
(17)

with 16 k 6 `− 1. Hence〈F(`)〉p may be derived from the formula

〈F(`)〉p =
∑̀
m=1

P(�m)2
−m (18)
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that makes use of the fact that the average fraction of fitter neighbours is 2−m with probability
P(�m) (namely, when the walk done is of themth type), and of the fact that, clearly,∑̀

m=1

P(�m) = 1. (19)

We rewrite formula (18) explicitly:

〈F(`)〉p = p`−12−` +
`−2∑
k=0

(1− p)pk2−(k+1). (20)

Performing the sum and with a minor rearrangement of the terms result 4 is obtained.
Result 4 is the starting point for deriving an estimate of the average length〈`(N)〉p of a

p-walk. It is sufficient to consider that on average the walk stops when〈F(`)〉p falls below
the value 1

N
, that is, when there are no fitter neighbours. Hence the stopping condition reads

〈F(`)〉p ∼ 1

N
(21)

which leads to(p
2

)̀
+ 1− p ∼ 2− p

N
. (22)

Isolating` from the previous formula is a simple task and one obtains

〈`(N)〉p ' logp

2

[
1

N
((N − 1)p − (N − 2))

]
. (23)

One sees that in thep→ 1 limit the average length of an adaptive walk is recovered:

〈`(N)〉1 ≡ 〈`(N)〉 ' log2N. (24)

Formula (23) may be put in a more fashionable way as is shown by the following result,
analogous to result 3 of the unperturbed model.

Result 5.Let 〈`(N)〉p and〈t (N)〉p denote, respectively, the average length and duration of
ap-walk. There exists anN -dependent numberpc ∈]0, 1[ such that the following estimates
hold:

(i) 〈`(N)〉p '
log[ 1

N
((p − pc(N))(N − 1))]

log p

2

(25)

(ii) 〈t (N)〉p ' 1

1− 2p

(
(1− p)〈`(N)〉p − p1− (2p)〈`(N)〉p

1− 2p

)
. (26)

Let us rewrite formula (23) in the form

〈`(N)〉p '
log[ 1

N
((N − 1)p − (N − 2))]

log p

2

. (27)

This must by definition be a positive number, though it may not be an integer. But since
its denominator is negative, so has to be its numerator. But this only holds if

0<
1

N
((N − 1)p − (N − 2)) < 1. (28)

The right-hand side inequality leads to a condition forp that is always satisfied; the left
inequality leads on the contrary to the requirement that

p > pc(N) ≡ 1− 1

N − 1
. (29)
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Minor rearrangements of the terms in formula (23) lead thus to part (i) of result 5.
We see now from formula (25) that the average length of ap-walk diverges as

p → pc(N)
+. Note that the critical thresholdpc depends on the dimensionN of the

phase space. Also, it is simple to check that, for allN ,

lim
p→p+c

〈`(N)〉p
log(p − pc) = β < 0. (30)

This means that when we approach the critical point from above the average length diverges
as

〈`(N)〉p ≈ log(p − pc)β = −|β| log(p − pc). (31)

Let us turn to time. It is clear that ap-walk of infinite length is also of infinite duration.
Recalling that one unit of time corresponds to a trial spin flip and fitness check in our model,
let us derive an expression for the average duration〈t (N)〉p of a p-walk. The strategy we
wish to adopt is the following: since the system remains for a certain amount of time in
each configuration it visits, during which it tries point mutations to find a fitter neighbour
configuration, we can think of evaluating the average time spent in a configuration, and sum
over all configurations visited during ap-walk, that on average are〈`(N)〉p. In the case of
an adaptive walk everything is simple: since the fraction of fitter neighbours is halved on
average at each step, the waiting time is doubled on average, so that to take the`th step it
is necessary to wait a time〈τ(`)〉 = 2`−1 on average (the average waiting time to take the
first step is one since all neighbours are fitter by assumption, and so on).

Hence, when the average fraction of fitter neighbours is 2−` the time required to find
a fitter one mutant configuration is 2`−1. We thus could estimate the average waiting time
〈τ(`)〉p to take the`th step of ap-walk as we estimated〈F(`)〉p, namely by formula
(18), simply by substituting all average fractions of fitter neighbours 2−`, . . . ,2−1 with the
corresponding average waiting times 2`−1, . . . ,1. We have

〈τ(`)〉p =
∑̀
m=1

P(�m)2
m−1. (32)

Using the probabilities (17) we obtain immediately

〈τ(`)〉p = p`−12`−1+ (1− p)
`−2∑
k=0

pk2k. (33)

Performing the sum we finally arrive at

〈τ(`)〉p = 1

1− 2p
(1− p − p(2p)`−1) (34)

which is what we were looking for. One sees that in the no-perturbation limitp→ 1 this
result leads to〈τ(`)〉1 ≡ 〈τ(`)〉 = 2`−1, as we expected. Furthermore, note that for` = 1
we get〈τ(1)〉p = 1 for all p, which is correct since in this model also the time needed to
take the first step is one.

Summing over all configurations transversed during ap-walk on average we obtain an
estimate for the average duration〈t (N)〉p:

〈t (N)〉p '
〈`(N)〉p∑
`=1

〈τ(`)〉p =
〈`(N)〉p−1∑

`=0

〈τ(`)〉p. (35)

The last equality holds by virtue of the fact that in formula (34) the dependence on` is only
in the term(2p)`−1. Therefore we may redefinè (varying from 1 to〈`(N)〉p) as ` − 1,



Percolation and lack of self-averaging 8765

and this new variable ranges from 0 to〈`(N)〉p − 1. After a minor rearrangement of the
terms we see we can split the sum into two sums:

〈t (N)〉p ' 1

1− 2p

( 〈`(N)〉p−1∑
`=0

(1− p)− p
〈`(N)〉p−1∑

`=0

(2p)`
)
. (36)

Now perform the sums under the assumption that〈`(N)〉p is an integer (we are interested
in an estimate; if the average length were not an integer, we would get an estimate by
summing up tob〈`(N)〉pc):

〈t (N)〉p ' 1

1− 2p

(
(1− p)〈`(N)〉p − p1− (2p)〈`(N)〉p

1− 2p

)
(37)

which is the estimated average duration of ap-walk. Note that in thep→ 1 limit, where
〈`(N)〉p → log2N , one recovers

〈t (N)〉1 ≡ 〈t (N)〉 ' N − 1. (38)

In the largeN limit that is what one gets from Kauffman’s maximally rugged model.
We have thus discovered that ifp > pc(N) then the average length of ap-walk in the

rugged random landscape is finite, whereas atp = pc(N) 〈`(N)〉p diverges. We emphasize
that this picture is qualitatively correct, despite the fact that formula (25) is an estimate
for 〈`(N)〉. The critical probabilitypc(N) depends on the phase space dimensionN . If
N is large, as we have assumed to derive these formulae, then it is close to one. Thus
a small perturbation, which means a value ofp which is just slightly different from 1, is
sufficient to switch on the probability that the system wanders through the rugged landscape
indefinitely.

In effect, we can render these observations more quantitative.

Result 6.Let Qp(`) denote the probability that ap-walk consists of̀ steps. We have

Qp(∞)
{
= 0 for p > pc(N)

> 0 for p < pc(N).
(39)

Of course we assume the validity of the normalization condition

Qp(∞)+
∞∑
`=1

Qp(`) = 1 (40)

that should hold for allp ∈ [0, 1] and where we have separated the term corresponding to
` = ∞. To prove result 6 it is sufficient to put〈`(N)〉p in the form

〈`(N)〉p = ∞Qp(∞)+
∞∑
`=1

`Qp(`) (41)

and consider that this average value is finite wheneverp > pc(N), and infinite otherwise.
We have mutuated this fancy way of writing this average value from percolation theory,

where the average number of lattice points in a cluster〈n〉p is written as (see for example
[11], where〈n〉p ≡ χ(p))

〈n〉p = ∞Pp(∞)+
∞∑
n=1

nPp(n) (42)

where Pp(n) represents the probability that a cluster contains exactlyn points.
Equations (41) and (42) are not very satisfactory from a notation point of view, since
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the quantity∞ is treated like a number. Anyhow, equation (39) indicates that thisp-walks’
model displays a percolation-like transition, that is analogous to the one described by

Pp(∞)
{
= 0 for p < pc(N)

> 0 for p > pc(N)
(43)

which characterizes ‘classical’ percolation theory, whereN indicates the dimensionality of
the lattice one is considering. In the largeN limit of the p-walks’ model the percolation
threshold is close to 1 (see formula (29)), so that a small perturbation is enough to turn on
the probability of no arrest.

4. The thermodynamic limit

The thermodynamic limit is obtained by letting the dimensionN of the phase space
0 = {+1,−1}N go to infinity. In this limit the average length of an adaptive walk
diverges logarithmically as stated by result 3. Hence, allp-walks are interminable. It
is therefore natural to consider, together with theN → ∞ limit for 0, the ` → ∞ limit
for � = {p, 1− p}`.

In the previous section we have seen that for finite`, � may be fragmented intò
subsets which we called ‘types’ ofp-walks. All walks of the same type, say themth
(1 6 m 6 `), are such that, on average, after` steps the fraction of fitter neighbours or,
if one wants, the probability to take one further step, is 2−m. We have denoted by�m the
mth type and byP(�m) the probability that ap-walk is of themth type. We have then
found thatP(�k) = (1− p)pk−1 for k = 1, . . . , ` − 1, and thatP(�`) = p`−1. When`
goes to infinity the number of fragments in which the� space is broken diverges, but still
each fragment retains the same meaning, for the probability that a certainp-walk of a given
type does not change if the number of types diverges. For example, the probability that
a p-walker finds half of his neighbours fitter than itself after` steps (i.e. the probability
that it is of type 1) is always 1− p for all `. What happens is that when the walker takes
an (` + 1)th step an additional type (the(` + 1)th) must be taken into account. But its
probabilityP(�`+1) causes a change inP(�`), whereas the probabilities of the remaining
types are unchanged.

Hence,�’s thermodynamic limit may be thought of as if it were constructed as follows.
Take� as an object of sizeP(�) = 1 and break it into infinite pieces�1, �2, . . . of sizes
W1 = P(�1),W2 = P(�2), . . . respectively. The breaking process depends on a given real
numberp ∈ [0, 1]. First, we tear� in two pieces of sizesW1 = 1− p andp. Then we
take the latter and tear it in two pieces of sizesW2 = (1− p)p andp2. Third, we take the
one of sizep2 and break it in two pieces of sizesW3 = (1−p)p2 andp3. In principle, one
may continue breaking the pieces of sizesp`−1 at the`th step and take thè→∞ limit.
In the end we have an infinite set of pieces of sizes

W1 = 1− p
W2 = (1− p)p
. . .

Ws = (1− p)ps−1

. . . .

(44)

The sizesWs represent the probabilities that ap-walk is of thesth type in the thermodynamic
limit. Clearly,

∑
s Ws =

∑∞
s=1(1− p)ps−1 = 1. In [2] we called this ageometrically
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broken object, since the sizes of the resulting pieces form a geometric sequence. In fact,
Ws+1 = pWs for s = 1, 2, . . . .

Now suppose we have a certain number ofp-walkers, each of which chooses its value
of p from a given probability densityρ(p) on the [0, 1] interval. To each of these will
correspond a specific rupture of the space� of p-walks, since for the geometrical breaking
the weights of the typesWs depend just on the value ofp. Hence eachp-walker gives
a different breaking sample of�. This picture is quite usual in the theory of disordered
systems, where one deals with systems with a quenched disorder represented by a number
of stationary random variables. For each sample, namely for each choice of the quenched
disorder, certain statistical or thermodynamic extensive obsevablesX (for example, the free
energy density) may be evaluated. One is usually interested in averagingX over disorder,
i.e. over all possible samplings of the quenched random variables. The most interesting
outcome in many cases is that non-self-averaging effects are present: sample-to-sample
fluctuations ofX do not vanish in the thermodynamic limit (i.e when one lets the size of
the system go to infinity). This means that〈X〉 (the average ofX over disorder) is finite
and that var(X) = 〈X2〉 − 〈X〉2 is non-zero. The probability densityP(X) of X remains
‘broad’ in the thermodynamic limit, whereas for a self-averaging quantity the probability
density in the same limit is highly concentrated around its average. As a result, the value of
a self-averaging quantity on a sufficiently large sample is a good estimate of the ensemble
average, while for non-self-averaging quantities no sample, no matter how large, is a good
representative of the whole ensemble.

More specifically, in model broken objects such as the randomly broken object [12] as
well as in other more complicated models (see [13] for a unifying review) one finds that
the sizesWs of the pieces lack self-averaging. In all of these the thermodynamic limit is
obtained by letting the number of pieces go to infinity. The study of non-self-averaging
properties of a geometrically broken object is the content of [2]. The model turns out to be
exactly solvable.

We consider in each sample the probability

Y =
∑
s

W 2
s (45)

that two randomly chosen walks in� are of the same type. The aim is to show that
Y ’s ensemble average〈Y 〉 over disorder (that is, overp) is non-zero and thatY ’s variance
var(Y ) = 〈Y 2〉−〈Y 〉2 does not vanish. This would yield the conclusion that the probabilities
Ws of the types are non-self-averaging quantities. Among other results, in [2] we have
proved the following.

(i) The probability density5(Y) of Y over all possible samples of a geometrically
broken object is given in the thermodynamic limit by

5(Y) = 2

(1+ Y )2ρ
(

1− Y
1+ Y

)
. (46)

(ii) Assumingρ(p) = 1 the ensemble average ofY is given by

〈Y 〉 =
∫ 1

0
Y5(Y ) dY = log 4− 1' 0.386. . . . (47)

(iii) Under the same assumption one can calculate the second moment〈Y 2〉 of Y and
show that the variance is given by

var(Y ) = 〈Y 2〉 − 〈Y 〉2 ' 0.078. . . . (48)

We thus come to the interesting conclusion that in the thermodynamic limit of thep-
walks’ model non-self-averaging effects are present: the probabilities that ap-walk is of
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a given type lack self-averaging (i.e. they remain sample dependent). In other words, the
probability Y that twop-walkers with samep make walks of the same type has non-zero
average and finite variance, despite of the fact that there are infinite different types.

Let us now turn to a different problem. Consider twop-walkers with freedom parameters
p1 andp2 respectively. We know that for each of them the probability that ap-walk is of
the sth type is given byWs(pi) = (1− pi)ps−1

i , for i = 1, 2. Let us define the variable

Z ≡ Z(p1, p2) =
∑
s

Ws(p1)Ws(p2) (49)

giving the probability that a randomly chosenp1-walk and a randomly chosenp2-walk in
� are of the same type. The ensemble average〈Z〉 has to be evaluated over all possible
choices ofp1 andp2. 〈Z〉 has some resemblance with a correlation function in the space�

of p-walks. We shall now prove that it is possible to calculate the probability density8(Z)

of Z, such that the probability that, for a given choice ofp1 andp2, Z is in the [Z,Z+dZ]
interval is given by8(Z) dZ. More precisely we prove the following.

Result 7.If both p1 and p2 are chosen from a uniform probability density on the [0, 1]
interval, then the probability density8(Z) of Z is given by

8(Z) = 2

(1+ Z)3 (1− Z
2− 2Z logZ). (50)

This allows us to evaluate〈Z〉 and var(Z) = 〈Z2〉 − 〈Z〉2. One finds that

〈Z〉 =
∫ 1

0
Z8(Z) dZ ' 0.289 867. . .

〈Z2〉 =
∫ 1

0
Z28(Z) dZ ' 0.130 395. . .

var(Z) ' 0.046 37. . . .

(51)

This tells us that, likeY , Z is non-self-averaging. But it also tells us that the values of
Z are more concentrated around its average than those ofY , at least for uniformρ, since
var(Z) is smaller than var(Y ).

We begin by calculatingZ for two given values ofp1 andp2. One has

Z =
∞∑
s=1

(1− p1)p
s−1
1 (1− p2)p

s−1
2 = (1− p1)(1− p2)

∑
s

(p1p2)
s−1 (52)

whence

Z(p1, p2) = (1− p1)(1− p2)

1− p1p2
. (53)

For simplicity of notation setp1 = x andp2 = y. Let

ζ(x, y) = (1− x)(1− y)
1− xy (54)

and define the regionD(Z) ⊆ [0, 1]2

D(Z) = {(x, y) ∈ [0, 1]2 : (ζ(x, y) 6 Z) ∧ (Z ∈ [0, 1])}. (55)

Suppose thatx and y are random variables with probability distributionsρ(x) and ρ(y).
The probability P{ζ(x, y) 6 Z} ≡ F(Z) is simply

F(Z) =
∫ ∫

D(Z)

ρ(x)ρ(y) dx dy. (56)



Percolation and lack of self-averaging 8769

D(Z)/R(Z)

R(Z)

ζ(x,y)=Z

1-Z 10

 x

1

 y

Figure 1. RegionsR(Z) andD(Z)/R(Z).

F(Z) and8(Z) are related by

8(Z) = dF(Z)

dZ
(57)

therefore calculatingF(Z) is the crucial step towards8(Z). Suppose for simplicity that
ρ = 1, so thatF(Z) is the area ofD(Z). From definition (54) we see that forx = 0,
ζ(0, y) = 1− y. Hence the curveζ(x, y) = Z touches they-axis at the pointy0 = 1− Z.
We thus construct the rectangleR(Z) = [y0, 1]× [0, 1] (as shown in figure 1) and note that
it is entirely contained inD(Z). F(Z) may thus be separated as

F(Z) =
∫ ∫

R(Z)

dx dy +
∫ ∫

D(Z)\R(Z)
dx dy. (58)

The first integral is equal to the area ofR(Z), that isZ. For what concerns the second
integral, we choose to evaluate it forx running on the curveζ(x, y) = Z and y ranging
from 0 to y0 = 1− Z. The coordinatesx of the points on the curveζ(x, y) = Z have the
form

x(y, Z) = y + Z − 1

y(Z + 1)− 1
(59)

as can be seen by inversion of definition (54). Therefore∫ ∫
D(Z)\R(Z)

dx dy =
∫ 1−Z

0
dy
∫ 1

x(y,Z)

dx =
∫ 1−Z

0
(1− x(y, Z))dy. (60)

We thus need to calculate the integral∫ ∫
D(Z)\R(Z)

dx dy =
∫ 1−Z

0

(
1− y + Z − 1

y(Z + 1)− 1

)
dy. (61)

This is quite a simple task, and the result is∫ ∫
D(Z)\R(Z)

dx dy = Z

(1+ Z)2 (1− Z
2− 2Z logZ). (62)

We finally obtainF(Z) from identity (58):

F(Z) = 2Z

(1+ Z)2 (1+ Z(1− logZ)). (63)
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Differentiating this with respect toZ we get at last result 7:

8(Z) = 2

(1+ Z)3 (1− Z
2− 2Z logZ). (64)

It may be verified that this function has a maximum in the [0, 1] interval.

5. Conclusion

To summarize we have studied an abstract evolutionary model in which the system’s size
is N and phase space0 has 2N configurations. The evolutionary ruleFp is a stochastic
map that depends on a real parameterp ∈ [0, 1]. For p = 1 we recover Kauffman’s
maximally rugged model and trajectories to local fitness optima are adaptive walks. For
genericp we have introducedp-walks. In the finiteN case we have shown that the
average length of ap-walk as estimated by result 5 is finite wheneverp > pc(N), where
the critical value ofp is given bypc(N) = 1− 1/(N − 1). Whenp→ pc(N)

+ and for all
p < pc(N) the average length diverges. This results in a percolation-like phase transition.
In the supercritical phase (p > pc(N)) all p-walks are of finite length, whereas in the
subcritical phase (p < pc(N)) the probability of an infinitely longp-walk is non-zero. In
the thermodynamic limitN → ∞ we have emphasized the fact that the cardinality of the
space� of p-walks must be considered infinite.� contains all representations ofp-walks
of a given length, hence the thermodynamic limit yields a divergence in the number of
different possible evolutions. We have shown that� may be partitioned in infinite subsets
grouping ‘similar’ p-walks. This fragmentation is analogous to that of a geometrically
broken object. Hence, we were able to prove that non-self-averaging effects are present:
the probabilityY that two p-walkers with the same value ofp have the same type of
evolution has non-zero average and finite variance, even though the number of different
types of evolutions is infinite. Lastly, we have studied the probabilityZ that two different
p-walkers (with different values ofp) have similar evolutions and have shown thatZ is also
non-self-averaging. The simplicity of the model has made it possible to obtain analytical
results in the thermodynamic limit for bothY andZ.

These results deserve some comment. Thep-walks’ model seems to be versatile for
different metaphoric interpretations, mostly because of its simple definition. Yet, it has
turned out to display a rich and non-trivial behaviour even in the thermodynamic limit.
It represents another non-self-averaging model, adding to a list which indicates the strong
need to find a more general theory, or at least the universality underlying the presence of
this phenomenon in many different contexts. We have also stressed in the introduction
that we have worked out this model as a model of an abstract behaviour. Nevertheless, a
comparison with biological evolutionary models is possible. [4] offers a detailed account
on the biological side of non-self-averaging effects. Interestingly, such quantities asY

in abstract disordered models are measurable quantities for biological systems. More
precisely in population geneticsY corresponds to a parameter called homozygosity, giving
the probability that two genes sampled randomly at the same locus in two individuals are
identical. It is an experimental fact, as is explained in [4], thatY has a broad distribution
for a large number of polymorphic loci in Drosophila. This can be a convincing evidence
of the fact that the evolutionary process is non-self-averaging. From this viewpoint, we
think our model shows that a less strict dynamical rule is necessary for non-self-averaging
effects to appear in a Kauffman-type model. If we are in a tightly adaptive situation two
systems undergoing biological evolution will always be doing the same type of walk, which
would meanY = 1 with a trivial distribution. On the contrary, if a certain variability is
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allowed, the probabilityY that the two systems find themselves in similar states is still not
zero, on average, but its distribution is broad and non-trivial. This kind of evolution sounds
closer to that implied by the experimental results on Drosophila. Note that the existence of
variability in the rule implies a non-zero probability of failure, which in our model is the
very feature leading to non-self-averaging effects.
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